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Abstract
We study the Cauchy problem for a system of two coupled nonlinear focusing
Schrödinger equations arising in nonlinear optics. We discuss when the
solutions are global in time or blow-up in finite time. Some results, in
dependence of the data of the problem, are proved; in particular we prove, for
suitable values of the parameters, that the blow-up threshold (if the nonlinearity
has the critical growth) is a universal constant.

PACS numbers: 42.81.Gs, 05.45.Yv, 42.65.Tg
Mathematics Subject Classification: 35Q55, 35Q60

1. Introduction

In this paper, we consider the following Cauchy problem for two coupled nonlinear Schrödinger
equations: ⎧⎨

⎩
iφt + �φ + (|φ|2p + β|ψ |p+1|φ|p−1)φ = 0
iψt + �ψ + (|ψ |2p + β|φ|p+1|ψ |p−1)ψ = 0
φ(0, x) = φ0(x) ψ(0, x) = ψ0(x),

(1)

where φ,ψ : R × R
n → C, φ0, ψ0 : R

n → C, p � 0 and β is a real positive constant.
This kind of problems arises as a model for propagation of polarized laser beams in

birefringent Kerr medium in nonlinear optics (see, for example, [3, 8, 15, 18, 26, 28, 29]
and the references therein for a complete discussion of the physics of the problem). The two
functions φ and ψ are the components of the slowly varying envelope of the electrical field,
t is the distance in the direction of propagation, x are the orthogonal variables and � is the
diffraction operator. The case n = 1 corresponds to propagation in a planar geometry, n = 2

1 Partially supported by MIUR project Aspetti qualitativi della teoria delle equazioni iperboliche, Buona positura e
stime di decadimento per equazioni dispersive e sistemi iperbolici.
2 Partially supported by MIUR project Metodi Variazionali ed Equazioni Differenziali non lineari.
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is the propagation in a bulk medium and n = 3 is the propagation of pulses in a bulk medium
with time dispersion (in this case x includes also the time variable).

The focusing nonlinear terms in (1) describe the dependence of the refraction index of
the material on the electric field intensity and the birefringence effects. The parameter β > 0
has to be interpreted as the birefringence intensity and describes the coupling between the two
components of the electric-field envelope. The case p = 1 (i.e. cubic nonlinearities in (1)) is
known as Kerr nonlinearity in the physical literature.

We are interested in a slightly more general model, in order to cover the physical cases
and to discuss some results about Cauchy problem (1) from a more general point of view.

The aim of this paper is to study the H 1 ×H 1 well-posedness of problem (1), with respect
to the nonlinearity, in analogy with the case of the single focusing nonlinear Schrödinger
equation {

iψt + �ψ + |ψ |2pψ = 0
ψ(0, x) = f (x),

(2)

for ψ : R
1+n → C and f : R

n → C.
The study of the single nonlinear Schrödinger equation begins with the pioneering works

[26, 28], where the collapse of waves (blow-up of solutions, in the sequel) is deeply analysed
by an experimental and theoretical point of view. In the last 30 years many authors worked on
this equation, in order to make clearness on the mathematical properties of (2); the well-known
results can be summarized as follows. By standard scaling arguments it is possible to claim
that the critical exponent for the H 1 local well-posedness of (2) is p = 2/(n−2) (see [6, 24]).
Indeed, contraction techniques based on Strichartz estimates (see [10, 14]) permit to prove
that (2) is locally well-posed in H 1 for p < 2/(n − 2) (see [9, 6, 24]). To pass from local to
global well-posedness, it is natural to introduce the energy function given by

E(t) = 1

2
‖∇ψ‖2

2 − 1

2p + 2
‖ψ‖2p+2

2p+2,

that is conserved along any solution ψ of (2). For p < 2/n the unique local H 1 solution can
be extended globally in time by a continuation argument. In the critical case p = 2/n, we
can also extend local solutions to global ones, provided the initial data are not too large in the
L2. Finally, for 2/n � p < 2/(n − 2) without restriction on the data, it is possible to prove
that the L2 norm of the gradient, in general, blows up in a finite time (see, e.g., the original
work [11] or [6, 24]).

By a physical point of view it is very interesting to determine the threshold for the initial
mass of the wave packet, that is the L2 norm of the initial datum, which separates global
existence and blow-up in the critical case. We recall that ψ = eit u(x) ∈ H 1 is a ground-state
solution for (2) if u is a nonzero critical point of the action functional

A(u) = E(u) +
1

2
‖u‖2

2 = 1

2

(‖∇u‖2
2 + ‖u‖2

2

) − 1

2 + 4/n
‖u‖2+4/n

2+4/n,

having the smallest action level; clearly, u solves

−�u + u = |u|4/nu. (3)

In [25], Weinstein proved that if the initial mass is smaller than a constant Cn, depending only
on the space dimension n, than there exists a unique global H 1 solution; moreover, Cn is the
L2 norm of any ground-state solutions of (2) and can be numerically estimated. Moreover,
we want to point out that this kind of phenomena for the single equation present other kind
of universality properties related, for example, to the blow-up profile (see [3, 19, 20] and the
references therein).
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Our main goal is to state the analogous result for the coupled system (1). The critical
exponent for the local H 1 × H 1 well-posedness has to be again p = 2/(n − 2); so for
p < 2/(n − 2) it is possible to prove that (1) possesses a unique local solution (see remark
4.2.13 in [6] and section 2). The natural energy for (1) is the following:

E(t) = 1

2

(‖∇φ‖2
2 + ‖∇ψ‖2

2

) − 1

2p + 2

(‖φ‖2p+2
2p+2 + 2β‖φψ‖p+1

p+1 + ‖ψ‖2p+2
2p+2

)
. (4)

Also here it is possible to prove that E(t) is conserved (see section 2); hence the same
techniques for the single equation can be applied to extend local solution to global ones. Now
we can state our first result.

Theorem 1. Assume that p < 2/n. Then the Cauchy problem (1) is globally well-
posed in H 1 × H 1, i.e. for any (φ0, ψ0) ∈ H 1 × H 1 there exists a unique solution
(φ,ψ) ∈ C

(
R;H 1 × H 1

)
.

Also here ground-state solutions of (1) play a crucial role in the dynamics of the system.
In this case, they are solutions of the form (φ,ψ) = eit (u(x), v(x)), where the functions u
and v have to be a least-action solution of a elliptic system (see (12)).

Since the birefringence tends to split a pulse into two pulses in two different polarization
directions, the properties of the ground-state solutions of (1) depend strongly on the coupling
parameter. If β is sufficiently small, that is the interaction is weak, any ground state is a scalar
solution, i.e. one of the two components is zero. On the other hand, when the birefringence is
strong, β � 1, we have vector ground states, i.e. all the components are distinct from zero (see
[1, 17]). This suggests that the blow-up phenomena, in the critical case, should also depend
on the parameter β. It is natural to claim that in a weak-interaction regime the behaviour
has to be exactly the same of the single equation. Otherwise if β � 1, we expect that the
analogous of the Weinstein threshold Cn should depend on β also. These claims are proved
in the following main theorem.

Theorem 2. Assume that p = 2/n. Then there exists a constant C = Cn,β such that the
Cauchy problem (1) is globally well-posed in H 1 × H 1 if

‖φ0‖2
2 + ‖ψ0‖2

2 < C.

Moreover, there exists a pair (φ0, ψ0) such that ‖φ0‖2
2 + ‖ψ0‖2

2 = Cn,β and the corresponding
solution blows up in a finite time. The constant Cn,β has the following behaviour:⎧⎨

⎩
Cn,β = Cn if β � 22/n − 1,

Cn,β � Cn

(1 + β)

22/n
if β � 22/n − 1,

(5)

where Cn is the blow-up threshold of a single equation.

Remark 3. In the supercritical case the solution of the Cauchy problem for (1) exists locally
in time, by the results in [6]. It is possible to prove that the solution exists globally in time if
the assumption ‖φ0‖2, ‖ψ0‖2 � 1 is satisfied (see theorem 6.1.1 in [6]).

Remark 4. As observed above, the Kerr nonlinearities (corresponding to p = 1) are physically
relevant; in this case the system (1) becomes{

iφt + �φ + (|φ|2 + β|ψ |2)φ = 0
iψt + �ψ + (|ψ |2 + β|φ|2)ψ = 0.

(6)

The above results (theorems 1 and 2) can be summarized in the following way:
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(i) if n = 1 the Cauchy problem (6) is globally (in time) well-posed in H 1 × H 1,
(ii) if n = 2 the cubic nonlinearity is critical, so the Cauchy problem (6) is globally well-posed

for small data; moreover the blow-up threshold C2,β is constant for any β � 1 and tends
to infinity as β → +∞,

(iii) if n � 3 a solution of the Cauchy problem (6) exists globally in time provided the initial
datum is sufficiently small in L2 × L2.

The single equation with a Kerr nonlinearity has been studied also in bounded domains
or on compact manifolds (see, for example, [4, 5] and the references therein). The study
of coupled nonlinear Schrödinger equations in bounded domains or on compact manifolds
should be interesting in view to extend the results for a single equation.

The paper is organized in the following way. Section 2 is devoted to the proofs of the
existence results above, in section 3 it is proved a Gagliardo–Nirenberg inequality (see (9))
which is the fundamental tool to obtain theorems 1 and 2. Section 4 deals with a blow-up
result which shows the sharpness of constant Cn,β , while in section 5 the proof of theorem 2
is completed.

2. Global existence results

The first part of this work is devoted to the proof of theorem 1. The theory for the single
nonlinear Schrödinger equation (2) was developed in [9, 13]; the proof of the local well-
posedness is a contraction argument based on Strichartz estimates, and the conservation of
both the mass and the energy allows us to extend the local solution globally in time. The fixed
point technique also works in the case of a system, hence problem (1) is locally well-posed in
H 1 for 0 � p � 2/(n− 2). We omit here the straightforward computations (see, for example,
remarks 4.2.13 and 4.3.4 in [6]).

Let us now study the conservation laws for system (1). Multiplying the equations in (1)
by φ and ψ , respectively, integrating in x and taking the resulting imaginary parts, we see that

d

dt
‖φ‖2

2 = 0,
d

dt
‖ψ‖2

2 = 0, (7)

i.e. the conservation of the masses. Note that these computations make sense if φ,ψ are H 1

solutions (it is possible to prove (7) also in the case of L2 solutions, following for example the
techniques of [21]).

Now we consider the energy E(t) defined in (4). Let (φ,ψ) be a solution to (1);
multiplying the equations in (1) by φt and ψt , respectively, integrating by parts in x and taking
the resulting real parts, we easily obtain the energy conservation

E′(t) = 0. (8)

This formal computation needs H 2 regularity for φ,ψ , but (8) makes sense (and can be proved)
also for H 1 solutions. To prove this, following exactly the same computations of Ozawa in
[21], proposition 2, we omit here the details.

In order to obtain an a priori control on the gradient of the solutions, we introduce a
Gagliardo–Nirenberg inequality (see section 3):(‖u‖2p+2

2p+2 + 2β‖uv‖p+1
p+1 + ‖v‖2p+2

2p+2

)
� Cn,p,β

(‖u‖2
2 + ‖v‖2

2

)p+1−p n
2
(‖∇u‖2

2 + ‖∇v‖2
2

)p n
2 , (9)

that gives the following bound from below:

E(t) � 1

2

(‖∇φ‖2
2 + ‖∇ψ‖2

2

) [
1 − Cn,p,β

p + 1

(‖φ‖2
2 + ‖ψ‖2

2

)p+1−p n
2
(‖∇φ‖2

2 + ‖∇ψ‖2
2

)p n
2 −1

]
.

(10)
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If p < 2/n, we easily see by (10) that the norms ‖∇φ‖2, ‖∇ψ‖2 cannot blow up in a finite
time, because of the conservation of both the mass and the energy; as a consequence, global
well-posedness in H 1 is proved in the subcritical range. The power p = 2/n is critical, in the
sense that this nonlinearity is sufficiently high to generate H 1 solutions blowing up in a finite
time. On the other hand, also in this case, the smallness assumption(‖φ‖2

2 + ‖ψ‖2
2

)2/n
<

p + 1

Cn,p,β

(11)

allows by (10) to obtain the same a priori control for the gradient in terms of the energy, hence
the global existence in theorems 1 and 2 is proved. The last part of theorem 2 is proved in
section 4.

3. Gagliardo–Nirenberg inequality

Our next step is to discuss, following the approach of [25], the behaviour of the best constant
Cn,p,β in the Gagliardo–Nirenberg inequality (9); this will allow us to understand which is
the critical initial level defining the border line between global well-posedness and blow-up
phenomena. This involves the existence of minimal energy stationary solutions of (1) and
allows us to clarify the concept of ground state.

Consider the functional

Jn,p,β(u, v) =
(‖∇u‖2

2 + ‖∇v‖2
2

)pn/2 (‖u‖2
2 + ‖v‖2

2

)p+1−pn/2(‖u‖2p+2
2p+2 + 2β‖uv‖p+1

p+1 + ‖v‖2p+2
2p+2

) , u, v ∈ H 1;

the infimum of Jn,p,β on H 1 × H 1 is clearly the reciprocal of the best constant Cn,p,β in (9).
First of all we want to point out that, for any u, v ∈ H 1 and for any µ, λ > 0, if we set
uµ,λ(x) = µu(λx) and vµ,λ(x) = µv(λx) it follows

‖uµ,λ‖2
2 = µ2λ−n‖u‖2

2, ‖∇uµ,λ‖2
2 = µ2λ2−n‖∇u‖2

2,

‖vµ,λ‖2
2 = µ2λ−n‖v‖2

2, ‖∇vµ,λ‖2
2 = µ2λ2−n‖∇v‖2

2,

‖uµ,λ‖2p+2
2p+2 = µ2p+2λ−n‖u‖2p+2

2p+2, ‖vµ,λ‖2p+2
2p+2 = µ2p+2λ−n‖v‖2p+2

2p+2,

so that

Jn,p,β(uµ,λ, vµ,λ) = Jn,p,β(u, v).

Assume that the infimum of Jn,p,β is achieved by (ũ, ṽ): since the value of the functional
is invariant with respect to the above scalings, we can assume that the best constant in (9) is
achieved by the pair (ũ, ṽ) such that(‖ũ‖2

2 + ‖ṽ‖2
2

) = (‖∇ũ‖2
2 + ‖∇ṽ‖2

2

) = 1.

Therefore, (ũ, ṽ) is a weak solution of the following system of two weakly coupled elliptic
equations: ⎧⎪⎪⎨

⎪⎪⎩
−pn

2
�ũ +

(2 − n)p + 2

2
ũ = 1

Cn,p,β

(|ũ|2p + β|ũ|p−1|ṽ|p+1)ũ

−pn

2
�ṽ +

(2 − n)p + 2

2
ṽ = 1

Cn,p,β

(|ṽ|2p + β|ṽ|p−1|ũ|p+1)ṽ.

Now consider the pair (ũµ,λ, ṽµ,λ), corresponding to the choice of parameters

µ =
(

2

Cn,p,β(2p + 2 − pn)

)1/2p

, λ =
(

pn

(2p + 2 − pn)

)1/2

;
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this pair solves the following elliptic system:{
−�ũµ,λ + ũµ,λ = (|ũµ,λ|2p + β|ũµ,λ|p−1|ṽµ,λ|p+1)ũµ,λ

−�ṽµ,λ + ṽµ,λ = (|ṽµ,λ|2p + β|ṽµ,λ|p−1|ũµ,λ|p+1)ṽµ,λ.
(12)

Note that the preceding system is variational in nature, so that any (weak) solution is a critical
point of the functional

In,p,β(u, v) = 1

2

(‖∇u‖2
2 + ‖∇v‖2

2 + ‖u‖2
2 + ‖v‖2

2

)
− 1

2p + 2

(‖u‖2p+2
2p+2 + β‖uv‖p+1

p+1 + ‖v‖2p+2
2p+2

)
.

Recently, the problem of existence of positive solutions for elliptic systems of this kind has
been studied by many authors (see, for example, [1, 2, 7, 16, 17, 23, 27]). In [17], particular
attention is given to the existence and some qualitative properties of the ground-state solutions
of (12): a ground-state solution is a nontrivial solution (i.e. distinct from the pair (0, 0)) which
has the least critical level. In particular, it is possible to prove the existence of ground-state
solutions for system (12) solving the following minimization problem:

inf
(u,v)∈N

In,p,β(u, v), (13)

where N ⊂ H 1 × H 1 is the Nehari manifold, that is

N = {
(u, v) 
= (0, 0) : ‖∇u‖2

2 + ‖∇v‖2
2 + ‖u‖2

2 + ‖v‖2
2 = ‖u‖2p+2

2p+2 + 2β‖uv‖p+1
p+1‖v‖2p+2

2p+2

}
.

Since N is a smooth (of class C2) manifold containing all the nontrivial critical points of
the functional, that is all the weak solutions of (12), clearly a ground-state solution has to
realize the minimum. We want to point out that In,p,β is bounded from below on N , so the
minimization problem (13) is well-posed; moreover, it is possible to prove that any minimizing
sequences is compact (up to translations) and that the minimum is achieved.

Let

mn,p,β = inf
N

In,p,β = In,p,β(ũµ,λ, ṽµ,λ)

be the level of any ground-state solution of (12); we want to prove that there is a direct relation
between Cn,p,β and mn,p,β . Recalling that any critical point of In,p,β is a weak solution of
(12), multiplying (12) by (ũµ,λ, ṽµ,λ) and integrating on R

n we obtain that

‖∇ũµ,λ‖2
2 + ‖ũµ,λ‖2

2 = ‖ũµ,λ‖2p+2
2p+2 + β‖ũµ,λṽµ,λ‖p+1

p+1,

‖∇ṽµ,λ‖2
2 + ‖ṽµ,λ‖2

2 = ‖ṽµ,λ‖2p+2
2p+2 + β‖ũµ,λṽµ,λ‖p+1

p+1.
(14)

Moreover in this case, Pohozaev identity reads
n − 2

2

(‖∇ũµ,λ‖2
2 + ‖∇ṽµ,λ‖2

2

)
+

n

2

(‖ũµ,λ‖2
2 + ‖ṽµ,λ‖2

2

)
= n

2p + 2

(‖ũµ,λ‖2p+2
2p+2 + 2β‖ũµ,λṽµ,λ‖p+1

p+1 + ‖ṽµ,λ‖2p+2
2p+2

)
. (15)

Putting together the above identities we have that

µ2λ2−n
(‖∇ũ‖2

2 + ‖∇ṽ‖2
2

) = (‖∇ũµ,λ‖2
2 + ‖∇ṽµ,λ‖2

2

) = nmn,p,β,

µ2λ−n
(‖ũ‖2

2 + ‖ṽ‖2
2

) = (‖ũµ,λ‖2
2 + ‖ṽµ,λ‖2

2

) =
(

2 − n +
2

p

)
mn,p,β,

µ2p+2λ−n
(‖ũ‖2p+2

2p+2 + 2β‖ũṽ‖p+1
p+1 + ‖ṽ‖2p+2

2p+2

)
= (‖ũµ,λ‖2p+2

2p+2 + 2β‖ũµ,λṽµ,λ‖p+1
p+1 + ‖ṽµ,λ‖2p+2

2p+2

) = 2p + 2

p
mn,p,β .
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All the above calculations imply that the following equalities hold:

1

Cn,p,β

= Jn,p,β(ũ, ṽ) = Jn,p,β(ũµ,λ, ṽµ,λ) = m
p

n,p,β

npn/2(2p + 2 − pn)p+1−pn/2

2(p + 1)pp−pn/2
. (16)

Note that, in the critical case p = 2/n, (16) becomes

1

Cn,2/n,β

= 22/n n

n + 2
m

2/n

n,2/n,β = n

n + 2

(‖ũµ,λ‖2
2 + ‖ṽµ,λ‖2

2

)2/n
. (17)

The arguments above, in particular (16), show that a minimum point of Jn,p,β , through
a suitable scaling, has to correspond to a ground-state solution of (12) (or to a least energy
nontrivial critical point of In,p,β ). Now, since in [17] it is proved the existence of ground-state
solutions to (12), we have obtained the existence of a minimum point for the functional Jn,p,β ;
this shows that inequality (9) is sharp and that there exists at least a pair of functions for which
equality holds. More generally, we have proved that the functionals Jn,p,β and In,p,β possess
the same number of critical values.

The validity of inequality (9) follows by the above arguments.

4. Blow-up results

In view to prove the sharpness of the constant C in the statement of theorem 2, we introduce
(following [11, 22]) another physically relevant quantity, that plays a crucial role in the analysis
of blow-up phenomena: the variance V (t), which is defined by

V (t) =
∫

|x|2|φ(t, x)|2 dx +
∫

|x|2|ψ(t, x)|2 dx. (18)

As in the case of a single Schrödinger equation, we will prove a relation between the time
behaviour of V and that of the H 1 norm of the solutions: as we will see in the following, the
precise calculation of the first and second derivatives of V in terms of the solutions of (1) is
the main tool for the description of the blow-up (see, for example, [6] for a proof in the case
of a single equation).

More precisely, we prove the following Lemma:

Lemma 5. Let (φ,ψ) be a solution of system (1) on an interval I = (−t1, t1); then, for each
t ∈ I , the variance satisfies the following identities:

V ′(t) = 4 Im
∫

[(x · ∇φ)φ + (x · ∇ψ)ψ] dx, (19)

V ′′(t) = 8
∫

(|∇φ|2 + |∇ψ |2) dx − 4np

p + 1

∫
(|φ|2p+2 + 2β|φψ |p+1 + |ψ |2p+2) dx. (20)

Proof. We introduce the following notations:

z = (z1, . . . , zn) ∈ C
n;

z · w =
∑

i

ziwi, z, w ∈ C
n;

ui = ∂u

∂xi

, u : R
n → C.

Multiplying the equations in (1) by 2φ and 2ψ , respectively, and taking the resulting
imaginary parts, we obtain
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∂

∂t
|φ|2 = −2 Im(φ�φ) = −2∇ · (Im φ∇φ), (21)

∂

∂t
|ψ |2 = −2 Im(ψ�ψ) = −2∇ · (Im ψ∇ψ). (22)

Now, multiplying (21) and (22) by |x|2, and integrating by parts in x, we immediately obtain
(19).

In order to prove (20), let us multiply the equations in (1) by 2(x · ∇φ) and 2(x · ∇ψ),
respectively, let us integrate in x and sum the equations for the real parts to get

0 = 2 Re
∫

i[(x · ∇φ)φt (x · ∇ψ)ψt ] dx + 2 Re
∫

[(x · ∇φ)�φ + (x · ∇ψ)�ψ] dx

+ 2 Re
∫

[(x · ∇φ)(|φ|2p + β|ψ |p+1|φ|p−1)φ + (x · ∇ψ)(|ψ |2p + β|φ|p+1|ψ |p−1)ψ] dx.

We rewrite the last identity in the form

I = II + III, (23)

where

I = 2 Re
∫

i[(x · ∇φ)φt (x · ∇ψ)ψt ] dx,

II = −2 Re
∫

[(x · ∇φ)�φ + (x · ∇ψ)�ψ] dx,

III = −2 Re
∫

[(x · ∇φ)(|φ|2p + β|ψ |p+1|φ|p−1)φ

+ (x · ∇ψ)(|ψ |2p + β|φ|p+1|ψ |p−1)ψ] dx.

For the first term, we have

I = −Re
∫

i
∑

j

(xjφjφt − xjφjφt + xjψjψt − xjψjψt) dx,

which can be written in the form

I = Re
∫

i
∑

j

xj [(φjφ)t − (φφt )j + (ψjψ)t − (ψψt)j ] dx

= d

dt
Re

∫
i[(x · ∇φ)φ + (x · ∇ψ)ψ] dx + n Re

∫
i(φφt + ψψt) dx.

Now we evaluate the last equality using the equations in (1), obtaining

I = d

dt
Im

∫
[(x · ∇φ)φ + (x · ∇ψ)ψ] dx − n

∫
(|∇φ|2 + |∇ψ |2) dx

+ n

∫
[(|φ|2p + β|ψ |p+1|φ|p−1)|φ|2 + (|ψ |2p + β|φ|p+1|ψ |p−1)|ψ |2] dx

= d

dt
Im

∫
[(x · ∇φ)φ + (x · ∇ψ)ψ] dx − n

∫
(|∇φ|2 + |∇ψ |2) dx

+ n

∫
(|φ|2p+2 + 2β|ψφ|p+1 + |ψ |2p+2) dx. (24)
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A multiple integration by parts in II gives the Pohozaev identity

II = (2 − n)

∫
(|∇φ|2 + |∇ψ |2) dx. (25)

As for the term III, we write it by components

III = −
∑

j

∫
{xj [|φ|2p(2 Re φjφ) + |ψ |2p(2 Re ψjψ)]

+ βxj [|φ|p−1|ψ |p+1(2 Re φjφ) + |ψ |p−1|φ|p+1(2 Re ψjψ)]} dx. (26)

Observe that

|φ|2p(2 Re φjφ) + |ψ |2p(2 Re ψjψ) = 1

p + 1

(|φ|2p+2
j + |ψ |2p+2

j

)
,

|φ|p−1|ψ |p+1(2 Re φjφ) + |ψ |p−1|φ|p+1(2 Re ψjψ) = 2β

p + 1
(|φ|p+1|ψ |p+1)j ;

hence, integrating by parts in (26) we have

III = n

p + 1

∫
(|φ|2p+2 + |ψ |2p+2 + 2β|φ|p+1|ψ |p+1) dx. (27)

Finally, recollecting (23)–(25), (27) and (19), we complete the proof of (20). �

Remark 6. Note that (20) can be rewritten, recalling the definition of E, in the following
equivalent form:

V ′′(t) = 16E(t) − 8
np − 2

2p + 2

∫
(|φ|2p+2 + 2β|φψ |p+1 + |ψ |2p+2) dx. (28)

In the critical case p = 2/n the equation above reduces to

V ′′(t) = 16E(t);
hence, the variance V of any solution of (1) with the negative initial energy vanishes in a finite
time. For each h : R

n → C we can estimate

‖h‖2
L2 = ‖|h|2‖L1 � ‖|x|h‖L2

∥∥∥∥ h

|x|
∥∥∥∥

L2

by Cauchy–Schwartz inequality. As a consequence of the standard Hardy’s inequality we
obtain

‖h‖2
L2 � ‖|x|h‖L2‖∇h‖L2 .

Applying the last inequality to any solution of (1) with the negative initial energy, since the
mass is conserved and the variance vanishes in a finite time, the L2 norm of the gradient needs
necessarily to blow up in a finite time.

Remark 7. Consider the following pair:

e−i |x|2−4
4(1−t)

(1 − t)n/2

(
U

(
x

1 − t

)
, V

(
x

1 − t

))
,
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where (U, V ) is a ground-state solution of (12). This is an explicit example of a blow-up
solution, which shows that theorem 2 is sharp. Indeed the pair is a solution of (1) and has the
initial value e−i(|x|2−4)/4(U(x), V (x)), which attains the critical blow-up threshold.

5. Conclusion: on the blow-up threshold

If p = 2/n, we have obtained the following characterization of the blow-up threshold:

1

Cn,2/n,β

= 1

Cn,β

= n

n + 2

(‖U‖2
2 + ‖V ‖2

2

)2/n
, (29)

where (U, V ) is a ground-state solution of (12). In order to prove theorem 2 we have to
estimate the quantities involved in (29).

In [17] (see theorem 2.5) it is proved that, if β < 22/n − 1, then any ground state of
the elliptic system (12) is a scalar function, that is one of the components of the ground-state
solution is zero. So we can assume, without loss of generality, that the ground state is (z, 0),
where z ∈ H 1 is the unique ground-state solution (see [25]) of the equation

− �z + z = |z| 4
n z. (30)

This implies that the constant Cn,β = Cn depends only on n for any β � 22/n − 1, since the
coupling parameter β now does not play a role in the problem of selecting the ground-state
solution. Moreover, Cn is exactly the blow-up threshold for a single nonlinear Schrödinger
equation, introduced and numerically computed in [25].

If β � 22/n − 1, Cn,β depends on n and β and its expression is unknown, but we can
estimate it using a suitable test pair. Let ẑ be the unique positive ground-state solution of

−�ẑ + ẑ = (1 + β)|ẑ| 4
n ẑ,

it is easy to see that the pair (ẑ, ẑ) is a positive solution of (12) for any β, and the following
inequality holds

1

Cn,β

= n

n + 2

(‖U‖2
2 + ‖V ‖2

2

)2/n � n

n + 2

(
2‖ẑ‖2

2

)2/n
.

Clearly, we have an inequality since (ẑ, ẑ) could not be a ground-state solution of (12).
Using the scaling as in section 3 we can estimate Cn,β with Cn. Recalling that z is the

ground-state solution of (30) and noting that the L2 norm of z is related to Cn (see (1.3) in
[25] and also (17)) we obtain that

‖ẑ‖2
4/n = ‖z‖2

4/n

1 + β
= n + 2

n(1 + β)Cn

.

Collecting the inequalities above we have

Cn,β �
(

1 + β

22/n

)
Cn,

so that the claim is proved.
Now we give some concluding remarks:

Remark 8. We point out that the physical relevance of this result is the explicit bound for the
constant Cn,β given in (5), since it determines the range of initial data for which the collapse
does not occur (see also [22, 25, 29]).

Equation (5) relies on the best constant in the Gagliardo–Nirenberg-type inequality (9),
which is sharp. This leads to conjecture that the inequality in (5) is, in fact, an equality.
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Remark 9. Note that it is possible to extend this argument to systems with more than two
nonlinear Schrödinger equations, using some results about the elliptic counterpart contained
in [1, 22].
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